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Abstract

In the last few years, classical planners have
achieved impressive results due to the development of
problem relaxation techniques for computing distance
estimates. In contrast, many large temporal planning
systems used for practical applications have not ben-
efitted from these techniques. Instead, these systems
rely on careful engineering of the domain knowledge,
together with carefully crafted domain-dependent con-
trol information. In this paper, we explain some of the
characteristics of NASA’s EUROPA2 planning system
that make it difficult to directly apply the heuristic tech-
niques developed for classical planning. However, we
then borrow ideas from some of these methods to de-
velop domain-independent heuristic techniques for EU-
ROPA2. We show some promising initial results con-
cerning their effectiveness.

1. Introduction

Many planners used for space and robotic applica-
tions, such as EUROPA [1], ASPEN [2] and IxTeT
[3] rely on careful engineering of the domain together
with hand-crafted domain-dependent search control in-
formation, in order to carefully control the search for
plans. Encoding this control knowledge is generally
quite difficult and time consuming, and can lead to mod-
els that are not very robust to small changes in the do-
main or in the nature of the problems being solved.

In the last decade, the academic community has
demonstrated significant improvements in the perfor-
mance of domain-independent classical planning sys-
tems. Key to this improvement has been the devel-
opment of domain-independent heuristic techniques for
estimating the distance between states and goals. Gen-
erally, these techniques rely on automatically generat-
ing a relaxed formulation of the planning problem and
using a solution of this relaxed problem as a distance
estimate. One popular method for doing this is to gen-
erate a plangraph [4], extract a relaxed plan from it,
and use the cost of this solution as the distance es-
timate [5]. It would be quite useful and desirable if
these control techniques could be applied to the tempo-
ral planning systems used for space applications. Un-

fortunately, there are difficulties involved in doing this:
the representation languages for these systems are quite
different, allowing much more complex temporal and
metric constraints, and the search strategies employed
by these systems cannot be characterized as either sim-
ple progression or regression. As a result, it is difficult
to directly map the techniques from classical planning
systems to these application systems.

In this paper, we develop novel domain-independent
heuristic guidance techniques for the EUROPA2 plan-
ning system. This planner has been used for several
NASA mission applications including MAPGEN, the
ground-based daily activity planning system for the
Mars Exploration Rover mission (MER) [6], and the In-
ternational Space Station, where it is currently used for
power systems management at the Johnson Space Cen-
ter. The EUROPA2 planner has been shown to be ex-
tremely successful in solving complex real-world prob-
lems by providing the user with a powerful modeling
language as well as a highly customizable solving en-
gine. Nevertheless, EUROPA2 suffers from having lit-
tle or no effective domain-independent heuristic guid-
ance. Our technique borrows ideas from the work of
Haslum and Geffner ([7]), and Helmert ([8]). In par-
ticular, we build transition graphs for the different state
variables in EUROPA2, and use these graphs to com-
pute distance estimates for choosing and resolving flaws
within EUROPA2’s plan refinement mechanism.

In order to explain our technique it is necessary
to have some understanding of the EUROPA2 plan-
ning paradigm and search algorithm. We give a quick
overview of the essentials in the next two sections. We
then describe our technique for automatically deriving
domain-independent heuristic estimates. We conclude
by presenting some preliminary experimental results.

2. EUROPA2: Paradigm and modeling
language

For EUROPA2, planning domains and problems are
described using a declarative modeling language called
NDDL (New Domain Definition Language). A plan-
ning domain D in NDDL is represented by the follow-
ing elements:

• A set of timelines: T = {T1, T2, . . . , Tn}, which



are essentially variables capturing the evolution of a
quantity or component over time

• A set of mutually exclusive activities asso-
ciated with each timeline Ti: Act[Ti] =
{a1( ~x1, δ1), . . . , an( ~xn, δn)} where ~x is the vector
of the activity’s parameters and δ = [δmin, δmax] is a
mathematical interval in N representing the duration
of the activity

• A conjunction of temporal constraints associated
with each activity ai: C[ai] = c1 ∧ . . . ∧ cn, where
a conjunct cj can assume one of the following two
forms:
– cj = ai temporal relation ak

Such a conjunct is called a compatibility. It is a
qualitative (meets, met by, etc.) or quantita-
tive temporal constraint between the activity ai and
any other activity ak belonging to either the same
timeline T or to another timeline Th. The activity
ai is called master and the activity ak is called a
slave.

– cj = (case γ = 1 : C−1 ); . . . ; (case γ = m :
C−m)
A conjunct can also correspond to a choice be-
tween different conjunctions of compatibilities
C−h , where C−h = {c1 ∧ . . . ∧ cl} and ci =
ai temporal relation ak. The choice be-
tween the conjunctions is regulated by the variable
γ, which is called the guard of the case.

A rich set of temporal relationships is permitted in
compatibilities, including: equal, meets, contains, after,
starts, overlaps and all their inverse relations. These
relations are similar to the thirteen temporal relations
defined by Allen [9].

The above representation differs from domain de-
scriptions expressed in PDDL [10], the standard spec-
ification language used by the academic community
to describe classical planning tasks. The main differ-
ences are: 1) NDDL uses a variable/value represen-
tation (timelines/activities) rather than a propositional
representation, and 2) there is no concept of state or
action in NDDL, only of activities and constraints be-
tween them.

A planning problem P for EUROPA2 is represented
by a pair P = {H, I} where:
• H ∈ N is the end of the planning horizon, meaning

that we only care about the behavior of the system
with respect to the temporal window [0,H].

• I is the initial configuration represented by a set of
activities placed on their corresponding timelines. If
we annotate an activity a by a time interval τ(a) =
[st(a), et(a)] (indicating the temporal extent over
which a holds), then, for each activity ai in I, it is
possible either to specify the specific position of ai

on the timeline, which basically means fixing the start
and end time of τ(ai), or to leave ai floating on the
timeline between the origin and the horizon.

The initial configuration I corresponds to both the
initial state and the goal state as they are defined in clas-
sical planning. The activities in I that are placed at the
beginning of the horizon correspond to the traditional
initial state, while all the others generalize the classical
notion of goal since they can be placed not only at the
end of the horizon, but also in any other position. The
initial configuration is also the initial partial plan that is
turned into a final plan by the refinement planning pro-
cedure. A final plan π is the configuration where all the
timelines of the domain are fully covered by contigu-
ous activities from the start to the end of the horizon.
Some of the activities are those that appear in the initial
configuration, the others are triggered by the applicable
compatibilities associated with the initial activities and
those that are incrementally added to the plan. In fact,
a compatibility c that involves two activities ai and ak

imposes that, once ai has been chosen to be part of the
plan and placed on its proper timeline T , then an ac-
tivity ak must exist in the plan in such a way that the
temporal contraint stated by c is satisfied. A plan is
complete and consistent when all the timelines are fully
covered by activities, all the temporal contraints involv-
ing those activities are satisfied and all the variables are
instantiated.

An example. As an illustration of a simple NDDL
domain model, consider a rover equipped with a set of
instruments to explore a geological site. We model the
following subsystems as timelines: Battery , Navigator ,
Controller , Instrument1, . . . , Instrumentn. Each sub-
system can only perform certain activities. Let us
assume, for example, that Instrumentk is a micro-
scopic imager. It can perform one of the following
operations: TakeImg(rock, 1), Place(rock, 3), Stow(2),
Unstow(2) and Stowed([1, +inf]). The first activity con-
sists of taking a microscopic picture of a rock at the
site and lasts 1 time unit. The other specifications are
similar. The constraints that regulate the behavior of
the imager are the following: in order to take a picture
of a rock, the imager must be first unstowed and then
properly positioned in the vicinity of the rock. After
taking the picture, the imager can be placed in another
position for performing another experiment or can be
stowed. Those constraints are expressed by means of
the compatibilities. We show just a few of them:

• Unstow() meets Place(rock i)
• Place(rock i) meets TakeImg(rock i)
• case γ = 0 : TakeImg(rock i) meets Stow();
case γ = 1 : TakeImg(rock i) meets Place(rockj)

Note that in this model, we have not modeled or al-
lowed intermediate state between Unstow , Place, and
TakeImg operations – something that is not possible in
PDDL.

Additional compatibilities for Instrumentk govern its
interactions with the activities on other timelines. For
example, the instrument can take a picture of a rock only
if the navigator has already reached that rock and per-



sists in that position while the instrument is taking the
picture:

Instrumentk.TakeImg(rock i) contained by
Navigator .At(rock i).

An initial configuration I for the rover domain can,
for example, specify the level of the battery, the position
of the navigator and the status of the instruments at the
start of the planning horizon and, furthermore, can re-
quire that an image of a particular rock be taken within
a certain time interval.

2.1 EUROPA2: search algorithm

The planning algorithm at the core of EUROPA2 can
be thought of as an instance of plan refinement search
[11]; given a domain D and a problem P , the algorithm
starts from the initial configuration I and incrementally
refines it by adding activities to the timelines, ordering
those activities and binding variables until a final con-
sistent configuration is found. This algorithm can also
be seen as a search in the space of partial plans [12],
where a partial plan Π consists of the following ele-
ments:
• For each timeline T ∈ D, a set of activities ActΠ =
{t1, t2, . . . , tn}, which are not necessarily contigu-
ous on time.

• A temporal networkNΠ representing all the start and
end times of the activities in the plan and the con-
straints between them.

• A set of flaws FΠ = {f1, f2, . . . , fm}, where a flaw
is an indication of a potential inconsistency in the par-
tial plan. There are three types of flaws:
– Open condition flaws: They arise when applicable

compatibilities are applied, triggering activities as
slaves of masters that are already in the plan Π.
Those slave activities are enforced to be part of the
plan, but they are not yet associated with any time-
line. We call them free activities.

– Ordering flaws: They arise anytime an activity is
placed on a timeline and an ordering is required
for the activity with respect to the other activities
already on that timeline.

– Unbound variable flaws: They arise when vari-
ables that have not yet been instantiated appear in
the plan Π. Those variables are said to be unbound.
There are two kinds of unbound variables: param-
eters of activities that are already in the plan and
guards of applicable temporal constraints.

Refining a partial plan means to pick a flaw and re-
solve it. The process terminates when the set of flaws is
empty. Each kind of flaw is resolved in a different way.
• Resolvers for open condition flaws

Flaws corresponding to free activities can be resolved
in two ways:
– Merging A free activity is merged with a matching

activity already in the plan The operation of merg-
ing does not result in the addition of any new flaws

to the current plan. An activity a is said to match
an activity a′ if a and a′ unify and the temporal
constraints involving a are satisfied by a′. Thus,
a and a′ can be considered the same activity and
we do not need to introduce a in the plan. Conse-
quently, the compatibilities associated with a are
not fired, because they have been already triggered
when a′ was introduced in the plan.

– Activation We introduce a new activity a in the
current plan associating it with the proper timeline,
but without choosing a specific time slot for it.The
compatibilities associated with a are applied and
the subgoal activities resulting from those compat-
ibilities are introduced as free activities. This re-
sults in both an ordering flaw, corresponding to the
just activated activity, and a number of open con-
dition flaws, corresponding to the new subgoal ac-
tivities.

• Resolvers for ordering flaws
Once we have decided to place a new activity on a
timeline, we need to choose where to put it with re-
spect to the other activities already on that timeline.
For this purpose, the temporal constraints involving
the new activity are checked against the current tem-
poral network. An ordering flaw is resolved by im-
posing ordering constraints among activities in such
a way that the temporal network remains consistent
and all the constraints are satisfied.

• Resolver for unbound variable flaws
Unbound variable flaws are resolved by specifying a
value in the domain of the variable. If the variable is a
guard, the binding causes the introduction in the cur-
rent plan of the activities associated with the chosen
value.

The basic algorithm in EUROPA2 is a depth-first
search characterized by flaw selection, flaw resolution
and constraint propagation steps. Flaw selection iden-
tifies which flaw to resolve next. This is not a backtrack-
ing point, but, like variable ordering in constraint satis-
faction, has a significant impact on the amount of search
and backtracking required to find a solution. Flaw res-
olution deals with resolving a flaw by subsequently try-
ing all the resolution options (activation and merging
for open condition flaws, all possible activity orderings
for ordering flaws and possible variable bindings for
unbound variable flaws). This is a backtracking point
because if a resolution option does not work, the al-
gorithm tries another option until all options are ex-
hausted. Operations of plan refinement are interleaved
with constraint propagation on the constraint network
underlying the current partial plan. Contraint propaga-
tion is mainly used to test partial plans for consistency,
and discovers dead ends, which are either inconsistent
partial plans or partial plans with flaws that cannot be
resolved. However, it also plays another major role: it
provides the algorithm with a look-ahead capability that



allows it to filter away infeasible flaw resolvers before
the algorithm actually commits to them.
2.2 The search control problem

Through a combination of careful domain engineer-
ing and the crafting of domain-dependent search control
information, a user can customize and control search,
flaw selection and flaw resolution in EUROPA2. How-
ever, this process is painful, time consuming, and often
leads to models that are not robust to further enhance-
ments or changes. If EUROPA2 is run in the absence of
domain-dependent heuristics, it inevitably experiences
serious control problems. Plans are not found within a
reasonable amount of time even for problems that are
trivial for other domain-independent planners.

As mentioned in the introduction, there has been con-
siderable work in the academic community on devising
domain-independent heuristics for controlling planning
search. Generally, these techniques involve solving
some relaxed form of the planning problem in order to
obtain heuristic distance estimates, which are then used
to guide search. Simple but effective ways to obtain
relaxed problems are, for instance, ignoring PDDL op-
erator delete lists or decomposing the goal set of atoms
into smaller subsets [13, 7]. The computation of some
of those heuristics rely on the explicit construction of a
reachability graph [4, 5], while other methods perform
shortest path calculations on data structures that implic-
itly correspond to relaxations of the search space [7].
In addition to “distance-based” heuristics, other tech-
niques have been proposed that work on multi-valued
representations of planning problems. Fast Downward
[8] extracts a heuristic function by constructing a causal
graph of the domain and a domain transition graph for
each state variable in the domain. The first graph rep-
resents the critical interactions between state-variables,
while the second graph describes the dependancies be-
tween the values of a single state variable.

Although plangraph distance estimates have been
used effectively to guide POCL planners like RePop
[14] and VHPOP [15], to date, EUROPA2 has not ben-
efited from any of these techniques. There are several
reasons for this, including: the variable/value represen-
tation, the lack of distinction between state and action,
the lack of distinction between fact and goal, the lack
of causality in the compatibilities, the large number of
exogenous events and time constraints in many practi-
cal problems, and the bidirectional nature of the search
strategy (which appears essential for domains involv-
ing many time constraints and exogenous events). All
these factors make it difficult to directly map existing
domain-independent search control strategies to EU-
ROPA2. (Similar issues exist for other temporal plan-
ners like ASPEN [2] and IxTeT [3].)

In the next section, we develop a domain-
independent control strategy for EUROPA2 that builds
on the idea of constructing transition graphs [8] to com-
pute distance-based cost estimations [7].

3. A search control strategy for
EUROPA2

In order to effectively guide search in EUROPA2, we
need a method of assessing the impact of each possible
flaw resolution on the cost of completing a partial plan.
To do this, we build a set of transition graphs and use
these graphs during planning to do distance estimation.
More specifically, we construct a graph for each time-
line in the domain, describing the possible transitions
between the activities on that timeline. The nodes in the
graph represent activities and the transitions are induced
by the information available in the compatibilities for
the activities participating in the transition. Construct-
ing a useful transition diagram for a timeline essentially
requires that we reconstruct the causality hidden in the
compatibilities for the different activities. A cost is as-
sociated with a transition that identifies the temporal
distance between the activities involved in the transi-
tion. We calculate the cheapest path from any activity to
any other activity by running an all-pairs shortest path
algorithm on each graph.

Given a domainD and a timeline T ∈ D, the Activity
Transition Graph for T is a directed weighted graph
G[T ] = {V,E,LE}, where V is the set of vertexes, E
the set of edges and LE is a weight function that assigns
a numeric weight to each edge in the graph. The graph
is developed as follows:
• We create a node v ∈ V for each grounded activity a

that can appear on T .
• For each activity a that belongs to T , we split its

compatibilities into two groups: internal compati-
bilities, indicated as CI[ai], and external compatibil-
ities, indicated as CE[ai]. An internal compatibil-
ity expresses a temporal constraint between the ac-
tivity a and any other activity ai belonging to the
same timeline T , while an external compatibility ex-
presses a temporal constraint between the activity a
and any other activity ai belonging to a timeline dif-
ferent from T . We examine the sets of compatibilites
CI[a] and CE[a] with the purpose of defining the tran-
sitions in the graph. In particular, the set CI[a] will
specify the edges appearing in the transition diagram,
while the set CE[a] will dictate additional conditions
on those edges.

• Consider the set CI[a] of internal compatibilities for
a. All of these compatibilities must be either general-
ized meets or met by, because activities on the
same timeline cannot overlap. We define the transi-
tions into a and out of a as follows:
– The possible transitions out of a are described by
meets compatibilities: for each c ∈ CI[a] such
that c = a meets a′, we add a directed edge
e ∈ E between the node corresponding to a and
the node corresponding to a′. The edge e is la-
belled with the lower bound of the duration δ of
the activity a.



– The possible transitions into a are described by
met by compatibilities: for each c ∈ CI[a] such
that c = a met by a′, we add a directed edge
e ∈ E between the node corresponding to a′ and
the node corresponding to a. The edge e is labelled
with the lower bound of the duration δ of the activ-
ity a′.

Note that there may be more than one edge into or out
of a because of the presence of unbound guards in the
specification of the temporal constraints involving a.

• We now consider the external compatibilities CE[a]
for a and divide them into two further categories:
– meets, starts and contains compati-

bilities, which specify that the activity a must start
at a particular time at or before the start of another
activity a′. We will assume that these compatibil-
ities are describing “side effects” of the activity a
and we will ignore the compatibilities in this cate-
gory. (These side effects might cause interference
with the behavior of other timelines, but we neglect
this point here.)

– met by, ends and contained by com-
patibilities, which specify that the activity a must
start after the start of another activity a′, or that
only specify that a must start after some particu-
lar time. We will assume that these compatibilities
describe “requirements” for the activity a.1 For
such compatibilities, we do not add any edge in
the graph, but we keep track of them by associat-
ing a set of conditions with the appropriate incom-
ing edge for the node representing a (we call the
set Cond(a)).

For the rover example, Fig. 1 shows the activity
transition graph for the Instrumenti timeline, assuming
there are only two rocks in the domain.
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Unstow
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3

3

1

1

1

1
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Figure 1: Activity Transition Graph for Instrumenti

Given an activity transition graph G[T ] for a timeline
T , we define CostSP(a1, a2) to be the cost of the short-
est path between a1 and a2 in the graph. Using an all
pairs shortest-path algorithm we can precompute and

1The causality for contains and contained-by compatibili-
ties in NDDL is not always clear. The contained interval could
be a temporary effect of the containing activity, or it could be
a condition that must hold in order for the containing activity
to function as desired. For present purposes we will assume
that the contained interval is an effect rather than a condition.

store this information for each timeline prior to begin-
ning planning.

We now consider how to make use of this informa-
tion to do flaw resolution. Consider a partial plan Π
with an open condition or ordering flaw f , and suppose
that f has a possible resolution r. We define the cost
of the resolution, Cres(r), as follows for merging and
placement:
• Merging the activity a with some existing activity a′

on the timeline T :

Cres(r) ≡ 0

• Placing the activity a in an empty slot s on the time-
line T . The activity a can be compatible with more
than one empty slot on T . Given one of those empty
slots s, the activity ai preceding the slot s, and the
activity ai+1 following the slot s (see Fig. 2):

Cres(r) ≡
CostSP(ai, a) + CostSP(a, ai+1)− CostSP(ai, ai+1)

The first definition corresponds to the intuition that
the operation of merging has little cost, since it does not
modify the partial plan except for adding new tempo-
ral constraints. Moreover, it narrows the current set of
flaws while not adding any new flaws. The second defi-
nition estimates how well the activity a fits in the empty
slot s on T . Without a, there is a cost CostSP(ai, ai+1)
of going from the activity ai preceding s to the activity
ai+1 following s. By inserting a in the slot s, we instead
incur the cost CostSP(ai, a) of getting from ai to a, plus
the cost CostSP(a, ai+1) of getting from a to ai+1. The
difference of these costs is an indication of the penalty
incurred by placing a in the slot s. It represents the dif-
ference between the shortest path to go from ai to ai+1

going through a and the direct shortest path from ai to
ai+1. Clearly, if a is part of the direct shortest path, the
measure is zero.

a
i

a
i+1

a

s

T

Figure 2: Placing the activity a on the timeline T

If R[f ] = {r1, . . . , rk} is the set of possible resolu-
tions for a flaw f , we define the Cheapest Local Reso-
lution as:

CLR(f) ≡ minri∈R[f ]Cres(ri)

By using the CLR(f) for a placement flaw f , we prefer
to place the activity in a slot where it causes the smallest
increase in the net cost for the timeline T . This provides
an initial good estimate of cost since it generally prefers
merging (cost zero) to other possibilities, prefers slots
with low cost paths to higher cost paths, and avoids slots
where no transition is possible (infinite cost).

The above scheme is fairly simple because it does not
consider the interactions between an activity a and ac-
tivities on other timelines. In particular it neglects the



requirements that must be satisfied on other timelines
when placing a in a slot s. It also does not consider
the side-effects that might result on other timelines by
placing a in slot s. Omitting the side-effects is similar
to “ignoring delete lists” used in many current planning
systems, and we do not consider it further here. How-
ever, if we want to compute a better estimation of the
cost of placing an activity on a timeline, we should con-
sider the costs of the conditions that must be satisfied
on the other timelines in order to make the placement
possible. The information regarding conditions is avail-
able in the transition graph for the activity, since each
edge is annotated with a set of conditions involving ac-
tivities on other timelines (and hence appearing in other
transition graphs). There are a number of possibilites
for estimating the costs of satisfying these conditions.
All those options basically try to estimate the cost of
achieving a condition a′ on a timeline T ′ by analyzing
the transition graph for T ′ and calculating the CLR(f ′),
where the flaw f ′ corresponds to the placement of a′ on
T ′. Two issues must be addressed when following con-
ditions back to their transition graphs:

• Duplication: Conditions may be repeated for several
edges along a shortest path, so we must avoid includ-
ing the cost of a single condition more than once.

• Recursion: We could continue chasing back the con-
ditions along the shortest path for each condition ci,
trying to get a better estimate of the cost of obtaining
it. This process might never end, because conditions
for achieving ci might belong to the original timeline.

We have developed an algorithm for calculating costs
of conditions that gets around those problems by first
recursively collecting all the conditions into a set, and
then adding up the CLRs of the conditions. This ap-
proach avoids double counting and recursion because
each condition can appear at most once in the set. Space
limitations prevent us from presenting the details of the
algorithm so we give only a sketch here. Given a flaw
f for placing an activity a on a timeline T , the process
aims at collecting the set of all the conditions on all the
timelines that should be satisfied in order to perform
that placement. The final cost of the placement is then
taken as the sum of the CLR of the flaw f (as before)
plus the costs for this set of conditions. The set is de-
veloped by recursively going backward to the graphs of
the conditions for a, finding the paths to achieve them,
and unioning their conditions to the set, while taking
particular care that no duplicates are added. Since there
are a finite number of nodes and edges in the transition
graphs of the domain, this process will terminate. By
doing this, we are in essence collecting the entire set of
steps (over all timelines) that are necessary in order to
place a on T . This set can be seen as a relaxed plan for
a.

So far, we have presented the algorithm used by the
flaw resolution procedure when it has to estimate the
cost of resolvers for open condition and ordering flaws.

The algorithm to treat unbound variable flaws is based
on the same concepts and mechanisms that we have just
described. Choosing a resolver for an unbound variable
flaw means choosing a value for a guard variable, which
in turn corresponds to enforcing one set of compatibil-
ities instead of another. In order to rank the different
possible choices for a guard variable, we need to eval-
uate how difficult it is to achieve the compatibilities as-
sociated with that choice. Each compatibility will raise
an open condition flaw or an ordering flaw and we have
shown how to estimate the cost of resolving these kinds
of flaws. Once we have the cost of each flaw triggered
by binding the unbound variable with a certain value,
we pick the value associated with the lowest cost and
assign it to the guarded variable.

For flaw selection, we adopt a kind of fail first strat-
egy by considering the most costly flaw to attack next
according to the CLR metric defined above. We have
also considered other more traditional heuristics for
flaw selection, such as choosing the variable with “Min-
imum Domain Size”, but these heuristics resulted in
very poor performance.

4. Implementation and Experimental
Results

We have some preliminary experimental results for
the proposed heuristics within EUROPA2. The current
implementation is in C++ and the results were obtained
using a Pentium IV machine running at 1.8GHz with
1GB of RAM. Our current implementation includes
pre-processing to construct the activity transition graphs
and shortest-path tables, and the simple versions of the
flaw resolution and flaw selection procedures. We have
not yet fully implemented the more complex heuristics
that recursively chain back through transition graphs to
account for the conditions on graph edges. The un-
availability of a benchmark set of domains written in
NDDL makes performing experimentations within EU-
ROPA2 very laborious, since domains and problems
have to be manually provided. In order to carry out a
more comprehensive evaluation of the performance of
EUROPA2, we are developing an automatic translator
from PDDL2.1 [10] to NDDL, building on the trans-
lator from PDDL2.1 to SAS+ tasks (a variable/value
representation similar in concept to NDDL) presented
in [16] and [17]. The translator will provide us with
the opportunity to use the benchmark problem sets de-
veloped for the International Planning Competition, a
competition that is held every other year in conjunc-
tion with the International Conference on Planning and
Scheduling (ICAPS). Although these results are prelim-
inary, we present them as an indication of the fact that it
is possible to successfully export key techniques devel-
oped by the classical planning community into a very
different framework such as EUROPA2. In particular,
we aim at showing that, if we introduce automatically
derived heuristics into EUROPA2, it can work reason-



ably well on domains that are not specifically tailored to
fit its features, without the use of hand written control
rules.

We discuss the tests of the proposed heuristic on
two standard domains: TOWER-n and LOGISTICS.
Both these domains are particularly difficult for the
standard version of EUROPA2, because they involve
many causal disjunctive constraints and just a few sim-
ple temporal constraints. In our translation, an activ-
ity can correspond to either an action or a proposition.
The constraints involving actions describe the condi-
tions and the effects of actions. The constraints on
propositions explain under which circumstances those
propositions can be started and terminated (explanatory
and regular frame axioms). The second type of con-
straints are particularly critical for EUROPA2 for two
reasons. First, they introduce many disjunctions in the
domain specification. Second, since EUROPA2 works
bi-directionally, it can happen that a constraint explain-
ing how an activity can be terminated is prematurely ap-
plied. That results in an early action commitment that
is completely unmotivated with respect to the achieve-
ment of the goal. The proposed heuristic overcomes the
two problems by postponing those kinds of constraints
and binding disjunctive guards in an effective way.

We compare EUROPA2 with a closely related plan-
ner, CPT [18], which was awarded distinguished per-
formance in optimal planning for temporal domains at
the 2006 International Planning Competition. CPT is
based on a simple extension of the STRIPS language
where concurrent actions with an integer duration are
allowed. A constraint programming formulation is ex-
tracted from the initial problem specification. The do-
main theory is hence expressed in terms of variables,
their domains and constraints corresponding to disjunc-
tions, rules and temporal restrictions. The inference
machinery over this CP formulation provides a power-
ful pruning mechanism for discarding partial solutions
generated by a classical POCL branching schema. The
novelty of CPT is the ability to perform inference not
only on the actions already in the partial plan, but on
all the actions in the domain. Constraint propagation in
EUROPA2 offers some look-ahead capability, but not
the full reachability analysis provided in CPT.

The TOWER-n domain deals with the construction
of a tower made of n blocks b1, . . . , bn. Eventually,
the block b1 should be on top and bn on the table. We
consider two different initial configurations: (1) all the
blocks are on the table; (2) all the blocks are on the
table, except for bn which is on top of b1. If the origi-
nal planner is run on those problems without the use of
hand written control rules, it does not manage to find a
plan within a time bound of hours, even for instances
with only three blocks. On the other hand, when we
introduce the heuristic estimators, EUROPA2 performs
extremely well. For the initial configuration (1), a solu-
tion is found by pure inference and no search. In Fig-
ure 3, we show the performance of EUROPA2 on this

problem considering instances from two to fifty blocks.
We compare EUROPA2 with CPT. This planner, like
EUROPA2, does not rely on search to solve this prob-
lem and so outperforms other state-of-the-art planners.
For the initial configuration (2), EUROPA2 finds a plan
with only shallow backtracking and the performance is
comparable with that shown in Figure 3. Although this
problem appears trivial for classical planners, powerful
systems such as FF [5] cannot solve it.
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Figure 3: Results for the Tower domain

LOGISTICS is the classical problem of moving
packages between different cities using trucks and
planes. We analyze several problems, from small ones
(e.g. “log01” has six packages, two trucks, one airplane,
two cities, two locations and two airports) to large ones
(e.g. “log39” has twenty one packages, seven trucks,
two airplanes, seven cities, seven locations and seven
airports). This domain differs from TOWER since it
presents many independent subgoals, while TOWER is
characterized by many dependent subgoals. Figure 4
shows that EUROPA2 scales well and manges to solve
all the problems (sometimes even without search). This
is not the case for CPT, which fails to solve the largest
instances. Without the new control heuristics, EU-
ROPA2 is not able to find a plan within a time bound
of hours for trivial instances, such as those involving
three packages and two cities.

5. Conclusions and Future Work

We have developed novel domain-independent
search control techniques for the EUROPA2 planning
system. These techniques construct transition graphs
for each timeline in the domain model and use these
graphs to estimate the cost of resolving flaws in differ-
ent ways. This information is used to guide both flaw
selection, and flaw resolution. Although our experi-
mental results are preliminary, they suggest that EU-
ROPA2 can get by with far less domain-dependent guid-
ance, and can successfully function as a general pur-
pose engine if it makes use of these powerful domain-
independent heuristics.
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In future work, we plan to carry out a more com-
prehensive performance evaluation by considering not
only classical problems developed for the International
Planning Competition, but also real-world problems. In
particular, we intend to take domains that were origi-
nally developed for EUROPA2 and traditionally solved
by using domain-dependent control rules, remove these
rules, and run the new algorithm against the resulting
domains. Those domains are usually big in size and
contain many complex temporal constraints. More em-
pirical work is needed to test whether the automati-
cally generated heuristics described in this paper can
extract sufficient knowledge from the domain analysis,
and obtain acceptable performance comparable to that
produced by hand-crafted heuristics.
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